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ABSTRACT

A strong-lower bound on the free distance of the class of npn—systemétic»
_periodic time-varying convolutional codes is derived; This bound is thenv >
cémbined with other known bounds to show that more ffee distance is
available with non-systematic godes than with systematic codes. Since it

is known that free distance is é more impbrtant parametef thanithe
conventional minimum distance for codes used with sequential decoding, it

is argued that fewer decoding errors will be made wifhlnonésystqeatiq codes

than with systematic codes of the same rate and constraint length,



YA Strong Lower Bound on Free Distance for Periodic

Convolﬁtional Cddes"

I.AIntroduction
-It has recently been discovered that freg distance iéﬂa mﬁre
important parameter'for>coﬁvolutional éodes uséd wifh sequentiai decéding'
than the conventional minimum distance 1_. Two importantAﬁounds 6n the
free distan;e attainable;withbbinary convoiutidﬁal codes ﬁé%e‘been reported.
McEliecé and Rumsey 2 héve shown a Plotkithypé upper BoundAon free |
distance for rate R = 1/N systematig convqlutioﬁél codes._.Aéymptotically.
this bound states fhat | |
.. Yeper 1-R : - I .
SHm s , | e (1)

Lp) a
i1 ‘ .
A

m—)co
where dFREE is the free distance, m is the memory of the code,‘and ny

is the constraint length of the code. Neumanﬁ 3 ‘has obtained a lower’

= N(m+1)

bound ‘on free distance for nonjsystematic convolutional codes. Asymptotically

this bound states that

- Mt (1-R) for R 2 0.374 |
d L omd . | (2)
lin SRR, R (1-2%%1 e |
. ) nA = ] for R = 0.374
m > “H(1-2 ) + 2R-1 - :
where H(x) = -x iog2 x - (1-x) log, (1-x) is the binary entropy function.
‘Note that for the range of rates above R = 0.374, this_bound is twice the
usual‘Gilbértilower bound on minimum diStaﬁce. It is also known that the
. .

usual Gilbert lowerbeﬁnd holds for:the_free'distance of syétematié codes © .
| It>is the pﬁfpose of this paper to prove a:Sfrqnger lower béﬁnd thaﬁ_(?)

for the more_generél cléssréf ﬂon—éystematic perio&ic-time;varying “

convolutionai éodes. In particular, for this clasé of codes it will be

shown that



d  R-1 : ' -
FREE R(1-2" 7) . (3)
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Note that this bound is of the same Form éé the boundvin (2) for R £ 0.57
exzept fhat 2R is replﬁqed by.R; It can also be sﬁgwn that theruppef‘bound‘
in (1) holds forvthe class of sysfeﬁatic'pgfiodic time—var&ing'codeé N .

Théﬂbounds of'equationsl(l), (2); and (3) areAﬁlotted élong %ith thé
usuél'Gilbert lower bound in Figure 1. Note that fér the.class of periodic
codes the lower bound on non-systematic codes is everywﬁere greatervthan
the upperAbbund on systematic cédes. Heﬁéé more freé distance is available

- from néﬁ-systeﬁatié periédiC»codes than ffom systematic-périodic godéé. |
The same conclusion can be drawn for the class of non—time—?arjing codés
for the range of rates oﬁef %hicﬁ»the lower bound on rgﬁ—systématié codes
exceedsvtﬁe upperAboupd on systematig codes, i;e., for R

These rééults have important implications when codes aré‘béing seiected
fér use with sequential decodiﬁg. It has recéﬁtly.ﬁeen_showﬁ that fqr’
various codes of a’givep goﬁstraint length used wifhlsequential decoding?
fewer decoding errors afe>méde by fhe codes with lagger free:distances 1f5 s
Therefore non—systematic'qodes_Will in_general»yield bettér.sequential decoding
performance‘théﬁ s&stematic codes, Bucher 6 has also.arrivédbat tHis coﬁ_

clusion through an analysis of the sequential decoding algorithm.

II. Preliminaries.
The encoding equations for a rate R = k/N binary time-varying con-
volutional code can be written as
Y=x8, o S €
where

T O



is the sequence of binary information digits,

: * L@ W @ a1
Y= Y0 Yg0 Tpoee- l = [ Yo  e+e Yo Yy e ynv Yy ...y2 ...] (6)
is the sequence of Binary\tranSmitted digité or cddeword, and
(0) gd(o} 6,(0) ... g (0) 0 0 ...
(1) g, (1) ... 8 ,( » [ 0 .. (n
(2) ... 6 ,(2). §,-1(2) G (2) e

o |o (LG)]

G,

;]o r_l:‘m

hangs. e ' . . . . -

is the semi-infinite generator matrix in which each

gh1 (W gy

2) )

e gh1 Au)

1, . 2) W
9 (w) A (u)_... AP (uw) 8)

- .
° . .

ghk(l) (u)‘ ghk(2) (u} . bghk(N) (u)

_is ak x N matfix of binary digits, 0 Sps m, 0.; u <w,

.3} =[ xi(l) Xi(2) ces xi(k)']is the block of k inputvdigits into the
| . e . @ @
encoder at tlme'unlﬁ i and ¥ = [yi i o

3 os yi(N) ]is the block of N

output digits from the encoder at time unit 1. m is called thé.memory of
éhe code and n, = N(m+1), the maximum number of transmitted digits which
can be éffected by-a single non-zero block of inforﬁétion digits, is called
the constraint length.

If

Eh(u) = _G_hb(u'}-T), 0 g h é m, 0 é u <oc_:,- - (9)

then the‘time—varying code is periodic with period T, i.e., the generator

matrix repeats itself every kT rows. If T = 1, every set of k rows‘inﬁg
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is the same (except for shifting N columns to the'nighf), and the code is _

" non-time-varying or fixed.,

Lot X(J) [ (j) 1’(3‘)_ X2(j)

k and Xf]) [ Yo yicj) (j) ]be the j—h-transmltted
<

‘] be the jzh-information subseqhence,

< -

1
eubsequence, 1 2 j = N. Then if the flrst k toansmltted subsequences are
- exact reproductions of the k information subsequences, the code is said
to be in systematic'form. .Cdeafly tnis nlaces the-fbllowing'resfficfions
on the generator metfix of a:periodie eode: N - L

g =[x P [Lofuer, ff.i_'_f_"i S

(u) is a k x (N k) matrix of

wherebik is the k x k 1dent1ty matrix and Q

binary dlglts, and
' <

) - - u.%v BRI o . S T
gh(u)=[ok:gh(u)],o=u<-'r, ‘1, h = m, | o s

where dk is the k x k all-zero matrix and Q

Y (v) is a k xv(N—k)vnatrlx of

binary digits.
The free distance of a convolutional code is defined as the minimum
Hammlng distance between any two dlStlnCt codewords, i.e.,

dppre = mln dH (x G, x' G), ' (12)
: X7

where dH ¢, ) denotes the Hammlng distance between the two arguments.

Because the encoding prbeess is linear, (12) can be simplified to

) ‘: i W -
depgg = Min Wy (2 8 o (18)
X#O . P
where WH(') denotes the Hamming weight of the ergument. Hence dFRBé'is seen

te be the minimum ﬂamming weight codeword.

- For all cedes:thaf do net exhibit cetasfrophic error bropagatien,
Massey 7 has shownvthef infinitely'iong infornation sequences must
produee dnfiniéeﬂweight codewords. Therefofe the minimum free weight
codeword muet_be produced by a finite_lengfh jnformation sequence., In

fact it is known that this 1ength cannot be more than the order of'm2 for

- b~



~systematic R = 1/N fixed codes 1,8 . A similar bound can bé-shéwn to
hold for almost all'non—systematicAperiodié qodesrg . Let L'Bé'tﬁé
bound on the léngfh (in blqcks of k digits‘eachj of informati9nlséguence
néeded to produce the'miﬁiﬁum free weight codeword.‘ Hen;eforthgwe‘will
consider only hon—systematic periédic codegxﬁith<

period T 2 L + m such that T is only an algebraic function of m, 1.e., T
growsrless‘than expoqentially with‘ﬁ. This is equivalent to_expurgating
from the ensemble»bf ¢od§é that vahishingly small fracfion Qf éodes%for

which L may grow exponentially with m.

III. Three Lemmas.

Lemma 1. No information‘séQﬁenée-with a'éfrihg of m or more cdhséqutivé

all-zero blocks can produce the minimum frée wéight codewofdf' |

Proof. Following any.information sequénce with a striﬁg of m or more con-

secufive %il—zero blocks and then additiénal non-zero blocks can only add

to the weight of the codeword. Hence such an informétion sequence cannof'

produce fhe‘minihum free wéight'codeWOfd;_Q.E.D. |
vLet‘Sh be tﬁe set of ail informétion éeéﬁences §f'length h (in.blocks‘

= X, T e T

of k digits each) such that 2y #0, x 20 %y

Zuth-1 T = X Zu-1 T Zusn”

< . . .
Xytheg = **° ° 0, for some u, 0 = u < T, and which contain no string of m

or more.conéecutive all-zero blocks inciusivé between block u and block
u+h—1. Now let F(h,d) be the fraction of codes with a codeword of weight

~d or less produéed by an information sequence from the set Sh

| . a |
-Lemma 2. T(Qk—l)’ 5 (N(?+1))
. < V =0
. F = ] .
. 2' .
Proof. For a particulér information séquenCe of length 1 belonging to S

19

we must specify the number of different ways of choosing a low weight row
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- d . L -
~of G. Clearly, there are I .(N(?+1) ) ways of choosing a low weight
. 520

N(m+1) - tuple. Once one row of G has been specified as having low
weight, the [k—l + (T-l)k] N(m+1) = TkN(m+1) - N(m+1) digits in the
remaining distinct rows can be chosen arbitrarily. Hence a particular

information sequence from 81 can'produce a low weight codeword in at most

2TkN(m+1) - N(m+1) R (N(?+1)) codes. Since there are T(25-1) ways of
' "~ j=0 .

choosing such an information sequence and since there are approximately
TN (m+1) |

total codes in the expurgated ensemble,

_ " d :
F(1,d) S __j=o Q.E.D
. ? 2N(m+1) e
Lemma 3.
x .2 9 N(mth)
_ T (27-1)° © ( 3 )
F(h,d) § 1=0 for h = 2, 8,..., L.

2(N-k)h 22k + Nm

Proof. For a particular informatibn sequence of length h belonging to S

: . : ~d N(m+§
the transmitted sequence contains mt+h blocks. Hence there are I ( 3
. S ' : . j=0

low weight transmitted sequences. If the information sequence being
considered is one for which u = 0, then the encoding equations can be
written as follows:

o = % 8 (O

Yy % & W+ x G (1 ,

Y, = %5 8y (2) + 5, 8 (2) + 2, G, (2)

In = 2p o (M + Xy 4 & (W) +ewot x5 Gy (m)

Vo1 = Eqoq G (b-1) 4 gh_z 8, (h-1) +..+ x . G (h-1)

: 2m+h;1 RSN gm'(m+h—1).

E]

)y

(18)



Since no information‘sequences with a string of m or more consecutive
B _ ' > i

all-zero blocks belong to Sh’ and since T = mth, equations (14) are a

linearly independent set. Therefore, given a particular information

sequence from S_ with u = 0 and a particular low weight transmitted éequenCé,

h

ThN(m+1) - N(h+h)

there are 2 solutions to equ&tions (14). Since there

are at most T2k(h 2) (2 1) different information sequences in Sh’ and

since there are approx1mateiy 2TkN(m+1) total codes in the_expurgated
ensemble, _J ‘
PrERn? z (N(“‘*h)> |
F(h,d) 1=0 for h = 2,3,...5, L. Q.E.D.

Qh(N—k) 2K + Nm

Iv. Deriﬁéfion of the Bound.
Theorem 1. There exists at least one non-systematic pefiddic convolutional
code such that

. 9%re > (122
lim o = ) .
e A H(1-2" 7)+R-1

A\

Proof. From.lemma 1 and the fact that norinformation sequence of length

L
'greater than L can produce the minimum free welght codeword, if I F(h, d) <1,
h=1
tnen there exists at least one code withbd >d. Let F_ = max F(h,D).
FREE max
<, <
1=h=1L
Then if LF < 1, there exists at least one code with d > d. '
: max . FREE : v ‘
. | = - o 4 N(mth), <
First an upper bound F_: on F will be obtained. Since f ( ", ) =
~ T Tmax max - 420 3
N(m+h) H(N( +h)) an upper bound on Fmax can be obtained by maximizing
N(mth) H(——~é~—) - h(N-k) . Leth be the value of h which maximizes
N(m+h) max .

this expression. By setting its derivative with respect to h equal to zero

and solving for h, it can be shown that h =9 - m.
) o . max R-1
» N(1-27 )
rd R_i; N
< — H(i-2" ") = h__ (N-k)
<% ~ <T(2k—1)2 y 1_2R i 4 max

Hence F =
max max 22k + Nm



Therefore if LF <1, then LT < 1 and there exists at least one
max max A :

code with dF > d. Alternatively, if 4 is the least integer such that

REL

1V

LF 2 1, then there exists at least one code with dF d.

max REE

Hence we must find the least integer d such that log2 LT + 2 log, (2 -1)

+ —3 H(1—2“-1) - h___(N-k) 2 2k + Nm. pividing by m and dropping
1‘2R51 “max : : , .

all terms which approach zero as M appféaches infinity, we obtain

. R-1 . L -

d B2 )y 4 1-Ry ., (xk) 2 N. This implies that

m . R-1 m - R-1 = T

1-2 1-2 -
%-; K(l—é_i ) . Therefore there exists at least one code such that
- H(1-2" 7) + R-1 o . :
d R-1, R
lin —XE 2 R(1-Z ) . Q.E.D.
mro A H(1-2 ) + R-1

This bound is interesting in itself in that it is the strongest lowew
bound known on any class of convolutional codes. This is due to the fact

that we are bounding d

FREE® which is always at least as greaf as the

conventional minimum distance 1., and we are expapding thg class of codes
‘to iﬁclude non—systematic'pericdic codes.l Taﬁlé 1 shows the ratio of tﬁe
bound in tﬁeorem 1 to the usual Gilbert lower bound as a function of rate.
For instance at R = %, the bound bf theérem'i is épprokimately 3 times as
strong as thé Gilbert bound. Note that fof‘very low ratés, the two bounds

are almost the same since only slight gains in dP can be expected from

REE

non-systematic codes over systematic codes. However at very high rates,

non-systematic codes offer great improvements in dPREB

over systematic
codes and the ratio of the bounds is quite large.

-8 -



V. Conclusions.

The objective of this paper was to demonstrate that more free distance
is available from non-systematic codes than from systematic codes. The
‘bound of theoreﬁ-i along with equation (1) showé that this isAtfue;for
periddic eodes of all rates. Equations (1) and (2) indicate that this
is true for fixed codes with R £ 0.3714, Slnce this is the range of rates
for which the least 1mprovement would be expected, tlghter boundlﬂg
arguments should produce the same result for fixed codes of all rates.
Since fpee distance is‘eloselyvreiated‘fo_seéﬁential’deeoding probability
of error, these'results indiéete the desirability of using non{systematie

codes with sequential decoding.
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TABLE 1

RATE AT/A
0 1
.05 1.33
.10 1.53
.15 1.71
.20 1.90

.25 2.12
.30 2.34
.35 '2.58
.40 2.86
45 3.20
.50 3.57
.55 4.03
.60 4.62
.65 5.30
.70 6.25
.75 7.60
.80 9.40
.85 12.37
.90 18.15
.95 32.85
1 1

R(1-28"1)

H(1—2R'1) + R-1

is the bound of theorem 1.

H-‘1 (1-R) is the usual Gilbert lower bound.
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€N (2)

—eqn.(1)
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